Главная страница
Поиск по модели:
  
Карта сайта
Порно игры скачать в телефон
Рингтон enya only time скачать
Игра лавка чудес скачать торрент
Александр вестов все песни скачать через торрент
Скачать windows 8 professional x64 rus
Игры с мультиплеером скачать
Майнкрафт скачать карту города 1 5 2
Скачать образец личная карточка учета выдачи сиз
 

Скачать сборник мерзляка алгебра 7 класс

Рабочая программа по алгебре 7, 8, 9 класс на тему: Рабочая программа по алгебре 7-9 класс УМК Якир скачать бесплатно Социальная сеть работников образования Главные вкладки Рабочая программа по алгебре 7, 8, 9 класс на тему: Рабочая программа по алгебре 7-9 класс УМК Якир Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта второго поколения основного общего образования по математике по УМК Научные руководители — член-корреспондент РАОА. Кондаков, академик РАО Кезина, Составитель — Номировским, включенных в систему «Алгоримт успеха» В данных документах учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования. Сознательное овладение учащимися системой алгебраических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования. Практическая значимость школьного курса алгебры обусловлена тем, что её объектом являются количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства использования современной техники, восприятия научных и технических понятий идей. Математика является языком науки и техники. С её помощью моделируются изучаются явления и процессы, происходящие в природе. Алгебра является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно — научного цикла, в частности к физике, информатике. Развитие логического мышления учащихся при обучении алгебре способствует усвоению предметов гуманитарного цикла. Практические умения и навыки алгебраического характера необходимы для трудовой и профессиональной подготовки школьников. Развитие у учащихся правильных представлений о сущности и происхождении алгебраических абстракций, соотношении реального идеального, характере отражения математической наукой явлений и процессов реального мира, месте алгебры в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся и качеств мышления, необходимых для адаптации в современном информационном обществе. Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, алгебра развивает нравственные черты личности настойчивость, целе устремленность, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления и умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения. Изучение алгебры, функций, вероятности и статистики существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников. Изучение алгебры позволяет формировать умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе изучения алгебры школьники должны научиться излагать свои мысли ясно исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей. Важнейшей задачей школьного курса алгебры является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в алгебре правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Тем самым алгебра занимает одно из ведущих мест в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты изящества математических рассуждений, алгебра вносит значительный вклад в эстетическое воспитание учащихся. Пояснительная записка Курс алгебры 7 — 9 классов является базовым для математического образования и развития школьников. Алгеброические знания необходимы для изучения геометрии в 7 — 9 классах, алгебры и математического анализа в 10 — 11 классах, а также изучения смежных дисциплин. При этом учитываются доминирующие идеи и положения программы развития и формирования универсальных учебных действий для основного общего образования, которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности и способствуют формированию ключевой компетенции — умения учиться. В основу настоящей программы положено Фундаментальное ядро содержания общего образования, требования к результатам освоения образовательной программы основного общего образования, представленные в федеральном государственном образовательном стандарте основного общего образования, с учётом приемственности с примерными программами для начального общего образования по математике. Практическая значимость школьного курса алгебры 7— 9 классов состоит в том, что предметом его изучения являются количественные отношения и процессы реального мира, описанные математическими моделями. В современном обществе математическая подготовка необходима каждому человеку, так как математика присутствует во всех сферах человеческой деятельности. Одной из основных целей изучения алгебры является развитие мышления. В процессе изучения алгебры формируется логическое и алгоритмическое мышление, а также такие качества мышления, как сила и гибкость, конструктивность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, включающего в себя индукцию и дедукцию, обощение и конкретизацию, анализ и синтез, классификацию и систематизацию, абстрагирование и аналогию. Т Обучение алгебре даёт возможность учащимся научиться планировать свою деятельность, критически оценивать её, принимать самостоятельные решения, отстаивать свои взгляды и убеждения. Учащиеся, в процессе изучения алгебры, учатся излагать свои мысли ясно исчерпывающе, приобретают навыки чёткого и грамотного выполнения математических записей, при этом использование математического языка позволяет развивать у школьников грамотную устную и письменную речь. Формирует у учащихся представление об алгебре как части общечеловеческой культуры и знакомство с историей развития алгебры как науки. Значительное внимание в изложении теоретического материала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается особенностями изложения теоретического материала и упражнениями на сранение, анализ, выделение главного, установление связей, классификацию, обощение и систематизацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения демонстрация возможностей применения теоретических знаний для решения разнообразных задач прикладного характера, например решения текстовых задач, денежных и процентных расчетов, умение пользоваться количественной информацией, представленной в различных формах, умение читать графики. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные пояснения к решению типовых упражнений. Этим раскрывается суть метода, подхода, предлагается алгоритм или эвристическая схема решения упражнений определенного типа. В основу настоящей программы положены педагогические и дидактические принципы вариативного развивающего образования, изложенные в концепции образовательной программы «Перспективная школа», и современные дидактико-психологические тенденции, связанные с вариативным развивающим образованием и требованиями ФГОС. Личностно ориентированные принципы: принцип адаптивности; принцип развития; принцип комфортности процесса обучения. Культурно ориентированные принципы: принцип целостной картины мира; принцип целостности содержания образования; принцип систематичности; принцип смыслового отношения к миру; принцип ориентировочной функции знаний; принцип опоры на культуру как мировоззрение и как культурный стереотип. Деятельностно ориентированные принципы: принцип обучения деятельности; принцип управляемого перехода от деятельности в учебной ситуации к деятельности в жизненной ситуации; принцип перехода от совместной учебно-познавательной деятельности к самостоятельной деятельности учащегося зона ближайшего развития ; принцип опоры на процессы спонтанного развития; принцип формирования потребности в творчестве и умений творчества. Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. В организации учебно — воспитательного процесса важную роль играют задачи. Они являются и целью, и средством обучения. Важным условием правильной организации этого процесса является выбор рациональной системы методов и приемов обучения, специфики решаемых образовательных и воспитательных задач. Целью изучения курса математике в 7 - 9 классах является развитие вычислительных умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов, усвоение аппарата уравнений и неравенств как основного средства математического моделирования задач, осуществление функциональной подготовки школьников. Курс характеризуется повышением теоретического уровня обучения, постепенным усилием роли теоретических обобщений и дедуктивных заключений. Прикладная направленность раскрывает возможность изучать и решать практические задачи. В основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям. Предлагаемый курс позволяет обеспечить формирование как предметных уменийтак и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач. В курсе алгебры можно выделить следующие основные содержательные линии: арифметика; алгебра; функции; вероятность и статистика. Наряду с этим в содержание включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия — «Логика и множества» — служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая — «Математика в историческом развитии» — способствует созданию общекультурного, гуманитарного фона изучения курса. Общая характеристика учебного предмета «Алгебра» Настоящая программа по математике для основной школы является логическим продолжением программы «Перспективная школа» для начальной школы, а также продолжением курса «Математика» 5 — 6 класса и вместе с ней составляет описание непрерывного курса математики с 1-го по 9-й класс общеобразовательной школы по ФГОС. В основе содержания обучения математике лежит овладение учащимися следующими видами компетенций: предметной, коммуникативной, организационной и общекультурной. В соответствии с этими видами компетенций выделены главные содержательно-целевые направления развития учащихся средствами предмета «Математика». Под предметной компетенцией понимается осведомлённость школьников о системе основных математических представлений и овладение ими необходимыми предметными умениями. Формируются следующие образующие эту компетенцию представления: о математическом языке как средстве выражения математических законов, закономерностей и т. Формируются следующие образующие эту компетенцию умения: создавать простейшие математические модели, работать с ними интерпретировать полученные результаты; приобретать и систематизировать знания о способах решения математических задач, а также применять эти знания и умения для решения многих жизненных задач. Под коммуникативной компетенцией понимается сформированность умения ясно и чётко излагать свои мысли, строить аргументированные рассуждения, вести диалог, воспринимая точку зрения собеседника и в то же время подвергая её критическому анализу, отстаивать при необходимости свою точку зрения, выстраивая систему аргументации. Формируются образующие эту компетенцию умения, а также умения извлекать информацию из разного рода источников, преобразовывая её при необходимости в другие формы тексты, таблицы, схемы и т. Под организационной компетенцией понимается сформированность умения самостоятельно находить и присваивать необходимые учащимся новые знания. Формируются следующие образующие эту компетенцию умения: самостоятельно ставить учебную задачу цельразбивать её на составные части, на которых будет основываться процесс её решения, анализировать результат действия, выявлять допущенные ошибки и неточности, исправлять их и представлять полученный результат в форме, легко доступной для восприятия других людей. Под общекультурной компетенцией понимается осведомленность школьников о математике как элементе общечеловеческой культуры, её месте в системе других наук, а также её роли в развитии представлений человечества о целостной картине мира. Формируются следующие образующие эту компетенцию представления: об уровне развития математики на разных исторических этапах; о высокой практической значимости математики с точки зрения создания и развития материальной культуры человечества, а также о важной роли математики с точки зрения формировании таких важнейших черт личности, как независимость и критичность мышления, воля и настойчивость в достижении цели и др. Содержание математического образования в основной школе формируется на основе фундаментального ядра школьного математического образования. В программе оно представлено в виде совокупности содержательных разделов, конкретизирующих соответствующие блоки фундаментального ядра применительно к основной школе. Программа регламентирует объем материала, обязательного для изучения в основной школе, а также дает его распределение между 5—6 и 7—9 классами. Содержание математического образования в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения. Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии систематизация сведений о действительных числах, о комплексных числахтак же как и более сложные вопросы арифметики алгоритм Евклида, основная теорема арифметикиотнесено к ступени общего среднего полного образования. Содержание раздела «Алгебра» направлено на формирование у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе. Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики словесный, символический, графическийвносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры. Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности — умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, проводить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах. При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления. Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается используется распределенно — в ходе рассмотрения различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи. Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования. Ценностные ориентиры содержания учебного предмета Математическое образование играет важную роль как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная — с интеллектуальным развитием человека, формированием характера и общей культуры. Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства использования современной техники, восприятие интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др. Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И, наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др. Таким образом, расширяется круг школьников, для которых математика становится значимым предметом. Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов человеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления. Обучение математике дает возможность развивать у учащихся точную, экономную информативную речь, умение отбирать наиболее подходящие языковые в частности, символические, графические средства. Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Изучение математики способствует эстетическому воспитанию человека, пониманию красоты изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии. История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека. Описание места учебного предмета «Алгебра» в учебном плане: В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования в 7— 9 классах предмет «Математика» делится на два предмета: «Алгебра» и «Геометрия». Общее количество уроков алгебры в неделю в 7 — 9 класс — по 3 часа; в году 7 — 9 класс — по 102 часа, за курс 7 — 9 класс всего 306 часов. Распределение учебного времени между этими предметами представлено в таблице. Личностные, метапредметные и предметные результаты освоения учебного предмета «Алгебра» Взаимосвязь результатов освоения предмета «Математика» можно системно представить в виде схемы. При этом обозначение ЛР указывает, что продвижение учащихся к новым образовательным результатам происходит в соответствии с линиями развития средствами предмета. Познавательные УУД: 7 — 9-й классы — анализировать, сравнивать, классифицировать и обобщать факты и явления; — осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления на основе отрицания ; — строить логически обоснованное рассуждение, включающее установление причинно-следственных связей; — создавать математические модели; — составлять тезисы, различные виды планов простых, сложных и т. Преобразовывать информацию из одного вида в другой таблицу в текст, диаграмму и пр. Для этого самостоятельно использовать различные виды чтения изучающее, просмотровое, ознакомительное, поисковоеприёмы слушания. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы. Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника, позволяющие продвигаться по всем шести линиям развития. Средством формирования коммуникативных УУД служат технология проблемного диалога побуждающий и подводящий диалог и организация работы в малых группах, также использование на уроках элементов технологии продуктивного чтения. Предметные: 1 умение работать с математическим текстом структурирование, извлечение необходимой информацииточно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики словесный, символический, графическийобосновывать суждения, проводить классификацию, доказывать математические утверждения; 2 владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер; 3 умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах; 4 умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между вели¬чинами на основе обобщения частных случаев и эксперимента; 5 умение решать линейные и квадратные уравнения и нера¬венства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики; 6 овладение системой функциональных понятий, функцио¬нальным языком и символикой, умение строить графики функций, описывать их свойства, использовать функцио¬нально-графические представления для описания и анализа математических задач и реальных зависимостей; 7 овладение основными способами представления и анализа статистических данных; умение решать задачи на нахождение частоты и вероятности случайных событий; 8 умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов. Числовые выражения с переменными. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Основная цель — систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной. Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений. Нахождение значений числовых и буквенных выражений дает возможность повторить с учащимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры. В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки неравенств, дается понятие о двойных неравенствах. При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами. Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия учащимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения исследуется вопрос о числе его корней. Продолжается работа по формированию у учащихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе. Изучение темы завершается ознакомлением учащихся с простейшими статистическими характеристиками: средним арифметическим, модой, медианой, размахом. Учащиеся должны уметь использовать эти характеристики для анализа ряда данных в несложных ситуациях. Контрольных работ: 1 2. Степень с натуральным показателем. Степень с натуральным показателем и ее свойства. Основная цель — выработать умение выполнять действия над степенями с натуральными показателями. В данной теме дается определение степени с натуральным показателем. В курсе математики б класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление нахождении значений степени с помощью калькулятора. Рассматриваются свойства степени с натуральным показателем. На примере доказательства свойств степени учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений, содержащих степени, особое внимание следует обратить на порядок действий. Контрольных работ: 1 3. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители. Основная цель — выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители. Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями. Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами — сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы. Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями. В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества. Контрольных работ: 1 4. Применение формул сокращенного умножения в преобразованиях выражений. Основная цель — выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители. В данной теме продолжается работа по формированию у учащихся умения выполнять тождественные преобразования целых выражений. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево». Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование. В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач. Контрольных работ: 2 5. Функция, область определения функции. Вычисление значений функции по формуле. Прямая пропорциональность и ее график. Линейная функция и ее график. Основная цель — ознакомить учащихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида. Данная тема является начальным этапом в систематической функциональной подготовке учащихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у учащихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу. Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры. Контрольных работ: 1 6. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений. Основная цель — ознакомить учащихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач. Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений. Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах. Введение графических образов дает возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными. Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений. Контрольных работ: 1 7. Повторить, закрепить и обобщить основные ЗУН, полученные в 7 классе. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция и ее график. Основная цель — выработать умение выполнять тождественные преобразования рациональных выражений. Так как действия с рациональными дробями существенным образом опираются на действия с многочленами, то в начале темы необходимо повторить с учащимися преобразования целых выражений. Главное место в данной теме занимают алгоритмы действий дробями. Учащиеся должны понимать, что сумму, разность, произведение и частное дробей всегда можно представить в виде дроби. Приобретаемые в данной теме умения выполнять сложение, вычитание, умножение и деление дробей являются опорными преобразованиях дробных выражений. Поэтому им следует уделить особое внимание. Нецелесообразно переходить к комбинированным заданиям на все действия с дробями прежде, чем буду усвоены основные алгоритмы. Задания на все действия с дробями не должны быть излишне громоздкими и трудоемкими. При нахождении значений дробей даются задания на вычисления с помощью калькулятора. В данной теме расширяются сведения о статистических характеристиках. Вводится понятие среднего гармонического ряда положительных чисел. Изучение темы завершается рассмотрением свойств графика функции. Контрольных работ: 2 2. Степень с целым показателем. Степень с целым показателем и ее свойства. Начальные сведения об организации статистических исследований. Основная цель — выработать умение применять свойств, степени с целым показателем в вычислениях и преобразованиях сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации. В этой теме формулируются свойства степени с целым показателем. Метод доказательства этих свойств показывается на примере умножения степеней с одинаковыми основаниями. Дается понятие о записи числа в стандартном виде. Приводятся примеры использования такой записи в физике, технике и других областях знаний. Учащиеся получают начальные представления об организации статистических исследований. Они знакомятся с понятиями генеральной и выборочной совокупности. Приводятся примеры представления статистических данных в виде таблиц частот и относительных частот. Учащимся предлагаются задания на нахождение по таблице частот таких статистических характеристик, как среднее арифметическое, мода, размах. Рассматривается вопрос о наглядной интерпретации статистической информации. Известные учащимся способы наглядного представления статистических данных с помощью столбчатых и круговых диаграмм расширяются за счет введения таких понятий, как полигон и гистограмма. Контрольных работ: 1 3. Понятие об иррациональных числах. Общие сведения о действительных числах. Понятие о нахождении приближенного значения квадратного корня. Преобразования выражений, содержащих квадратные корни. Функцияее свойства и график. Основная цель — систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие о числе; выработать умение выполнять преобразования выражений, содержащих квадратные корни. В данной теме учащиеся получают начальное представление о понятии действительного числа. С этой целью обобщаются известные учащимся сведения о рациональных числах. Для введения понятия иррационального числа используется интуитивно представление о том, что каждый отрезок имеет длину и потому каждой точке координатной прямой соответствует некоторое число. Показывается, что существуют точки, не имеющие рациональных абсцисс. При введении понятия корня полезно ознакомить учащихся с нахождением корней с помощью калькулятора. Основное внимание уделяется понятию арифметического квадратного корня и свойствам арифметических квадратных корней. Доказываются теоремы о корне из произведения и дроби, а также тождествокоторые получают применение в преобразованиях выражений, содержащих квадратные корни. Специальное внимание уделяется освобождению от иррациональности в знаменателе дроби в выражениях вида. Умение преобразовывать выражения, содержащие корни, часто используется как в самом курсе алгебры, так и в курсах геометрии, алгебры и начал анализа. Продолжается работа по развитию функциональных представлений учащихся. Рассматриваются функцияее свойства и график. Контрольных работ: 1 4. Формула корней квадратного уравнения. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям. Основная цель — выработать умения решать квадратные уравнения и простейшие рациональные уравнения и применять их к решению задач. В начале темы приводятся примеры решения неполных квадратных уравнений. Рассматриваются алгоритмы решения неполных квадратных уравнений различного вида. В данной теме учащиеся знакомятся с формулами Виета, выражающими связь между корнями квадратного уравнения и его коэффициентами. Они используются в дальнейшем при доказательстве теоремы о разложении квадратного трехчлена на линейные множители. Учащиеся овладевают способом решения дробных рациональных уравнений, который состоит в том, что решение таких уравнений сводится к решению соответствующих целых уравнений с последующим исключением посторонних корней. Изучение данной темы позволяет существенно расширить аппарат уравнений, используемых для решения текстовых задач. Контрольных работ: 2 5. Повторить, закрепить и обобщить основные ЗУН, полученные в 8 классе. Числовые неравенства их свойства. Почленное сложение и умножение числовых неравенств. Линейные неравенства с одной переменной их системы. Основная цель — ознакомить учащихся с применение: неравенств для оценки значений выражений, выработать умение решать линейные неравенства с одной переменной их системы. Свойства числовых неравенств составляют ту базу, на которой основано решение линейных неравенств с одной переменной. Т ремы о почленном сложении и умножении неравенств находить применение при выполнении простейших упражнений на оценку выражений по методу границ. Вводятся понятия абсолютной погрешности и точности приближения, относительной погрешности. Умения проводить дедуктивные рассуждения получают развитие как при доказательствах указанных теорем, так и при выполнении упражнений на доказательства неравенств. В связи с решением линейных неравенств с одной переменно: дается понятие о числовых промежутках, вводятся соответствующие названия и обозначения. Рассмотрению систем неравенств одной переменной предшествует ознакомление учащихся с понятиями пересечения и объединения множеств. При решении неравенств используются свойства равносильных неравенств, которые разъясняются на конкретных примерах. В этой теме рассматривается также решение систем двух линейных неравенств с одной переменной, в частности таких, которые записаны в виде двойных неравенств. Разложение квадратного трехчлена на множители. Основная цель — расширить сведения о свойствах функций, ознакомить учащихся со свойствами и графиком квадратичной функции. I В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа. Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители. Эти сведения используются при изучении свойств квадратичной функции общего вида. При этом особое внимание следует уделить формированию у учащихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы. При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак. Вводится понятие корня га-й степени. Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется. Неравенства второй степени с одной переменной. В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Учащиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться в дальнейшем при решении тригонометрических, логарифмических и других видов уравнений. Расширяются сведения о решении дробных рациональных уравнений. Учащиеся знакомятся с некоторыми специальными приемами решения таких уравнений. Учащиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными их системы. Основная цель — выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем. В данной теме завершается изучение систем уравнений с двумя переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный учащимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения. Ознакомление учащихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами. Привлечение известных учащимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать учащимся, что системы двух уравнений с двумя переменными: второй степени могут иметь одно, два, три, четыре решения или не иметь решений. Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений. Изучение темы завершается введением понятий неравенства двумя переменными и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными используются при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными их систем. Относительная частота и вероятность случайного события. Начальные сведения о статистике. Основная цель — ознакомить учащихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события. Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и подсчитать их число. Разъясняется комбинаторное правило умножения, которое используется в дальнейшем при выводе формул для подсчета числа перестановок, размещений и сочетаний. При изучении данного материала необходимо обратить внимание учащихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче. В данной теме учащиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание учащихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными. Арифметическая и геометрическая прогрессии. Формулы п-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия. Основная цель — дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида. При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер используются для изучения арифметической и геометрической прогрессий. Работа с формулами n-го члена и суммы первых га членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем. Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач. Повторить, закрепить и обобщить основные ЗУН, полученные в 9 классе. Контрольных работ: 1 VI. Тематическое планирование с определением основных видов учебной деятельности. В тематическом планировании разделы основного содержания по алгебре разбиты на темы в хронологии их изучения, по соответствующим учебникам «Алгебра — 7 », «Алгебра — 8 », «Алгебра — 9 ». Особенностью тематического планирования является то, что в нём содержится описание возможных видов образовательной деятельности учащихся в процессе усвоения соответствующего содержания, направленных на достижение поставленных целей обучения. Это ориентирует учителя на усиление деятельностного подхода в обучении, на организацию разнообразной учебной деятельностиотвечающей современным психолого-педагогическим воззрениям, на использование современных технологий. Линейное уравнение с одной переменной. Распознавать числовые выражения и выражения с переменными, линейные уравнения. Приводить примеры выражений с переменными, линейных уравнений. Составлять выражение с переменными по условию задачи. Выполнять преобразования выражений: приводить подобные слагаемые, раскрывать скобки. Находить значение выражения с переменными при заданных значениях переменных. Формулировать определение линейного уравнения. Решать линейное уравнение в общем виде. Интерпретировать уравнение как математическую модель реальной ситуации. Описывать схему решения текстовой задачи, применять её для решения задач п. Научиться применять приобретенные знания, умения, навыки, в конкретной деятельности. Тождества 1 Проектор, презентация. Тренажёры для устного счёта. Формулировать: определения : тождественно равных выражений, тождества, степени с натуральным показателем, одночлена, стандартного вида одночлена, коэффициента одночлена, степени одночлена, многочлена, степени многочлена; свойства : степени с натуральным показателем, знака степени; правила : доказательства тождеств, умножения одночлена на многочлен, умножения многочленов. Доказывать свойства степени с натуральным показателем. Записывать и доказывать формулы: произведения суммы и разности двух выражений, разности квадратов двух выражений, квадрата суммы и квадрата разности двух выражений, суммы кубов и разности кубов двух выражений. Вычислять значение выражений с переменными. Применять свойства степени для преобразования выражений. Выполнять умножение одночленов и возведение одночлена в степень. Приводить одночлен к стандартному виду. Записывать многочлен в стандартном виде, определять степень многочлена. Преобразовывать произведение одночлена и многочлена; суммы, разности, произведения двух многочленов в многочлен. Выполнять разложение многочлена на множители способом вынесения общего множителя за скобки, способом группировки, по формулам сокращённого умножения и с применением нескольких способов. Использовать указанные преобразования в процессе решения уравнений, доказательства утверждений, решения текстовых задач п. Тренажёры для устного счёта. Тренажёры для устного счёта. Тренажёры для устного счёта. Вынесение общего множителя за скобки 1 Проектор, презентация. Вынесение общего множителя за скобки 1 Раздаточный материал. Тренажёры для устного счёта. Формулировать: определения : тождественно равных выражений, тождества, степени с натуральным показателем, одночлена, стандартного вида одночлена, коэффициента одночлена, степени одночлена, многочлена, степени многочлена; свойства : степени с натуральным показателем, знака степени; правила : доказательства тождеств, умножения одночлена на многочлен, умножения многочленов. Доказывать свойства степени с натуральным показателем. Записывать и доказывать формулы: произведения суммы и разности двух выражений, разности квадратов двух выражений, квадрата суммы и квадрата разности двух выражений, суммы кубов и разности кубов двух выражений. Вычислять значение выражений с переменными. Применять свойства степени для преобразования выражений. Выполнять умножение одночленов и возведение одночлена в степень. Приводить одночлен к стандартному виду. Записывать многочлен в стандартном виде, определять степень многочлена. Преобразовывать произведение одночлена и многочлена; суммы, разности, произведения двух многочленов в многочлен. Выполнять разложение многочлена на множители способом вынесения общего множителя за скобки, способом группировки, по формулам сокращённого умножения и с применением нескольких способов. Использовать указанные преобразования в процессе решения уравнений, доказательства утверждений, решения текстовых задач п. Вынесение общего множителя за скобки 1 п. Метод группировки 1 Проектор,презентация. Метод группировки 1 Раздаточный материал. Тренажёры для устного счёта. Метод группировки 1 п. Тренажёры для устного счёта. Тренажёры для устного счёта. Тренажёры для устного счёта. Тренажёры для устного счёта. Тренажёры для устного счёта. Обобщить приобретенные знания, навыки и умения по теме «Разложение многочлена на множители». Научиться применять приобретенные знания, умения, навыки, в конкретной деятельности. Функция 1 Проектор, презентация. Приводить примеры зависимостей между величинами. Различать среди зависимостей функциональные зависимости. Описывать понятия: зависимой и независимой переменных, функции, аргумента функции; способы задания функции. Формулировать определения: области определения функции, области значений функции, графика функции, линейной функции, прямой пропорциональности. Вычислять значение функции по заданному значению аргумента. Составлять таблицы значений функции. Строить график функции, заданной таблично. По графику функции, являющейся моделью реального процесса, определять характеристики этого процесса. Строить график линейной функции и прямой пропорциональности. Описывать свойства этих функций п. Функция 1 Тренажёры для устного счёта. Научиться применять приобретенные знания, умения, навыки, в конкретной деятельности. Системы линейных уравнений с двумя переменными. Приводить примеры: уравнения с двумя переменными; линейного уравнения с двумя переменными; системы двух линейных уравнений с двумя переменными; реальных процессов,для которых уравнение с двумя переменными или система уравнений с двумя переменными являются математическими моделями. Определять, является ли пара чисел решением данного уравнения с двумя переменными. Формулировать : определения : решения уравнения с двумя переменными; что значит решить уравнение с двумя переменными; графика уравнения с двумя переменными; линейного уравнения с двумя переменными; решения системы уравнений с двумя переменными; свойства уравнений с двумя переменными. Описывать : свойства графика линейного уравнения в зависимости от значений коэффициентов, графический метод решения системы двух уравнений с двумя переменными, метод подстановки и метод сложения для решения системы двух линейных уравнений с двумя переменными. Строить график линейного уравнения с двумя переменными. Решать системы двух линейных уравнений с двумя переменными. Решать текстовые задачи, в которых система двух линейных уравнений с двумя переменными является математической моделью реального процесса, интерпретировать результат решения системы п. Графический метод решения системы двух линейных уравнений с двумя переменными 1 Проектор, презентация. Графический метод решения системы двух линейных уравнений с двумя переменными 1 Раздаточный материал. Графический метод решения системы двух линейных уравнений с двумя переменными 1 Раздаточный материал. Тренажёры для устного счёта. Обобщить приобретенные знания, навыки и умения по теме «Системы линейных уравнений с двумя переменными». Научиться применять приобретенные знания, умения, навыки, в конкретной деятельности. Подвести итоги по выполнению проектных работ. Обобщить приобретенные знания, навыки и умения за 7 класс. Научиться применять приобретенные знания, умения, навыки, в конкретной деятельности. Тренажёры для устного счёта. Распознавать целые рациональные выражения, дробные рациональные выражения, приводить примеры таких выражений. Формулировать: определения: рационального выражения, допустимых значений переменной, тождественно равных выражений, тождества, равносильных уравнений, рационального уравнения, степени с нулевым показателем, степени с целым отрицательным показателем, стандартного вида числа, обратной пропорциональности; свойства: основное свойство рациональной дроби, свойства степени с целым показателем, уравнений, функции ; правила: сложения, вычитания, умножения, деления дробей, возведения дроби в степень; условие равенства дроби нулю. Доказывать свойства степени с целым показателем. Описывать графический метод решения уравнений с одной переменной. Применять основное свойство рациональной дроби для сокращения и преобразования дробей. Приводить дроби к новому общему знаменателю. Находить сумму, разность, произведение и частное дробей. Выполнять тождественные преобразования рациональных выражений. Решать уравнения с переменной в знаменателе дроби. Применять свойства степени с целым показателем для преобразования выражений. Записывать числа в стандартном виде. Возведение рациональной дроби в степень 1 Проектор, презентация. Тренажёры для устного счёта. Тренажёры для устного счёта. Тренажёры для устного счёта. Рациональные уравнения 1 Проектор, презентация. Рациональные уравнения 1 Раздаточный материал. Рациональные уравнения 1 Раздаточный материал. Тренажёры для устного счёта. Тренажёры для устного счёта. Научиться применять приобретенные знания, умения, навыки, в конкретной деятельности. Описывать: понятие множества, элемента множества, способы задания множеств; множество натуральных чисел, множество целых чисел, множество рациональных чисел, множество действительных чисел и связи между этими числовыми множествами; связь между бесконечными десятичными дробями и рациональными, иррациональными числами. Распознавать рациональные иррациональные числа. Приводить примеры рациональных чисел иррациональных чисел. Записывать с помощью формул свойства действий с действительными числами. Доказывать свойства арифметического квадратного корня. Применять понятие арифметического квадратного корня для вычисления значений выражений. Упрощать выражения, содержащие арифметические квадратные корни. Выполнять преобразование выражений с применением вынесения множителя из-под знака корня, внесения множителя под знак корня. Тренажёры для устного счёта. Арифметический квадратный корень 1 Проектор, презентация. Арифметический квадратный корень 1 Раздаточный материал. Операции над множествами 1 Проектор, презентация. Операции над множествами 1 Раздаточный материал. Тренажёры для устного счёта. Действительные числа» 1 Раздаточный материал. Научиться применять приобретенные знания, умения, навыки, в конкретной деятельности. Решение неполных квадратных уравнений 1 Проектор, презентация. Распознавать и приводить примеры квадратных уравнений различных видов полных, неполных, приведённыхквадратных трёхчленов. Описывать в общем виде решение неполных квадратных уравнений. Формулировать: определения: уравнения первой степени, квадратного уравнения; квадратного трёхчлена, дискриминанта квадратного уравнения и квадратного трёхчлена, корня квадратного трёхчлена; биквадратного уравнения; свойства квадратного трёхчлена; теорему Виета и обратную ей теорему. Записывать и доказывать формулу корней квадратного уравнения. Исследовать количество корней квадратного уравнения в зависимости от знака его дискриминанта. Доказывать теоремы: Виета прямую и обратнуюо разложении квадратного трёхчлена на множители, о свойстве квадратного трёхчлена с отрицательным дискриминантом. Описывать на примерах метод замены переменной для решения уравнений. Находить корни квадратных уравнений различных видов. Применять теорему Виета и обратную ей теорему. Выполнять разложение квадратного трёхчлена на множители. Находить корни уравнений, которые сводятся к квадратным. Решение неполных квадратных уравнений 1 Тренажёры для устного счёта. Решение неполных квадратных уравнений 1 Раздаточный материал. Научиться применять приобретенные знания, умения, навыки, в конкретной деятельности. Научиться применять приобретенные знания, умения, навыки, в конкретной деятельности. Распознавать и приводить примеры числовых неравенств, неравенств с переменными, линейных неравенств с одной переменной, двойных неравенств. Формулировать: определения: сравнения двух чисел, решения неравенства с одной переменной, равносильных неравенств, решения системы неравенств с одной переменной, области определения выражения; свойства числовых неравенств, сложения и умножения числовых неравенств Доказывать: свойства числовых неравенств, теоремы о сложении и умножении числовых неравенств. Записывать решения неравенств их систем в виде числовых промежутков, объединения, пересечения числовых промежутков. Решать систему неравенств с одной переменной. Оценивание значения выражения 1 Проектор, презентация. Описывать понятие функции как правила, устанавливающего связь между элементами двух множеств. Строить график квадратичной функции. По графику квадратичной функции описывать её свойства. Описывать схематичное расположение параболы относительно оси абсцисс в зависимости от знака старшего коэффициента и дискриминанта соответствующего квадратного трёхчлена. Решать квадратные неравенства, используя схему расположения параболы относительно оси абсцисс. Описывать графический метод решения системы двух уравнений с двумя переменными, метод подстановки и метод сложения для решения системы двух уравнений с двумя переменными, одно из которых не является линейным. Тренажёры для устного счёта. Приводить примеры: математических моделей реальных ситуаций; прикладных задач; приближённых величин; использования комбинаторных правил суммы и произведения; случайных событий, включая достоверные и невозможные события; опытов с равновероятными исходами; представления статистических данных в виде таблиц, диаграмм, графиков; использования вероятностных свойств окружающих явлений. Формулировать: определения: абсолютной погрешности, относительной погрешности, достоверного события, невозможного события; классическое определение вероятности; правила: комбинаторное правило суммы, комбинаторное правило произведения. Описывать этапы решения прикладной задачи. Пояснять и записывать формулу сложных процентов. Проводить процентные расчёты с использованием сложных процентов. Находить точность приближения по таблице приближённых значений величины. Использовать различные формы записи приближённого значения величины. Оценивать приближённое значение величины. Проводить опыты со случайными исходами. Пояснять и записывать формулу нахождения частоты случайного события. Описывать статистическую оценку вероятности случайного события. Находить вероятность случайного события в опытах с равновероятными исходами. Описывать этапы статистического исследования. Оформлять информацию в виде таблиц и диаграмм. Извлекать информацию из таблиц и диаграмм. Приводить примеры: последовательностей; числовых последовательностей, в частности арифметической и геометрической прогрессий; использования последовательностей в реальной жизни; задач, в которых рассматриваются суммы с бесконечным числом слагаемых. Описывать: понятия последовательности, члена последовательности; способы задания последовательности. Вычислять члены последовательности, заданной формулой n-го члена или рекуррентно. Формулировать: определения: арифметической прогрессии, геометрической прогрессии; свойства членов геометрической и арифметической прогрессий. Задавать арифметическую и геометрическую прогрессии рекуррентно. Записывать и пояснять формулы общего члена арифметической и геометрической прогрессий. Записывать и доказывать: формулы суммы n первых членов арифметической и геометрической прогрессий; формулы, выражающие свойства членов арифметической и геометрической прогрессий. Научиться применять приобретенные знания, умения, навыки, в конкретной деятельности. Рабочая программа разработана на основе примерной программы основного общего образования по математике и программы по алгебре для 7-9 классов автора Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 ч из расч. Рабочая программа составлена на основе принципов коррекционно-развивающего обучения детей- инвалидов дистанционно. Рабочая программа по алгебре 7-9 класс базовый уровень. Учебники под редакцией Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта второго поколения основного общего образования по математике по УМК А.



 
003102
В освоении новой техники Вы поступаете так:
изучаете инструкцию
просите кого-нибудь помочь
полагаетесь на интуицию
© 2005 — 2016 «www.sskazka.ru» Документы на все случаи!